Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS†
نویسندگان
چکیده
Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization has emerged as one of the most versatile reversible deactivation radical polymerization techniques and is capable of polymerizing a wide range of monomers under various conditions. One of the most important factors governing the success of a RAFT polymerization is the fraction of living chains at the end of the reaction, which can be maximized by using a low amount of initiator. From the point of view of the process, it is tempting to perform the polymerization in solution, which allows a better mixing. However, in this work it is shown that this choice may be negative for the quality of the polymer. Detailed analysis using Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) of poly(n-butyl acrylate) (pBA) obtained at high conversion in the RAFT solution polymerization revealed that in addition to the polymer chains, formed by the RAFT mechanism, there were two distinct populations resulting from chain transfer to solvent and transfer to polymer followed by β-scission. Complementary results from Size Exclusion Chromatography coupled with Multi Angle Light Scattering detector (SEC/MALS), quantum chemical calculations, and a mathematical model that predicts product distributions, were also used to further confirm the assigned structures. The results highlight the scope and limitation on the living fraction of chains due to chain transfer events using RAFT polymerization and reversible deactivation radical polymerizations in general, and furthermore, yielded information about the fate of midchain radicals formed by intramolecular transfer to polymer.
منابع مشابه
A New Approach for Monte Carlo Simulation of RAFT Polymerization
In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...
متن کاملIdentification of Candida species isolated from vulvovaginitis in Mashhad, Iran by Use of MALDI-TOF MS
Background and Purpose Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify of Candida species isolated from vulvovaginitis woman suffering vulvovaginitis refered to Ghaem Hospital, Mashhad, Iran, by use of MALDI-TOF mass spectrometry. Materials and Methods The 65 clinical samples isolated from Vulvovaginitis women were collected in...
متن کاملMALDI-MS: a Rapid and Reliable Method for Drug-to-Antibody Ratio Determination of Antibody-Drug Conjugates
Background: It is believed that the loading value of anticancer drug conjugated to the monoclonal antibody, called drug-to-antibody ratio (DAR), is the main quality feature of antibody-drug conjugates. Methods: In this study, matrix assisted laser desorption/ionization mass spectrometry was used to determine the average molecular weight of trastuzumab and its three conjugated forms. The differe...
متن کاملReaction monitoring of toluenediisocyanate (TDI) polymerization on a non-mixable aqueous surface by MALDI mass spectrometry.
The polymerization reaction of toluene diisocyanate (TDI) and hydroxyl compounds has been widely used for the production of polyurea resins. Since the composition and molecular-weight distribution of polymer adducts greatly influence the final properties of the resuting polymer, the development of analytical tools capable of monitoring the polyaddition reactions is important to control them as ...
متن کاملA Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co -ray Irradiation-Initiated RAFT Polymerization at Room Temperature
60Co γ-ray irradiation-initiated reversible addition–fragmentation chain transfer (RAFT) polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the chain transfer agent was first applied to acrylonitrile (AN) polymerization, providing a “green” platform for preparing polyacrylonitrile (PAN)-based carbon fibers using an environment-friendly energy source. Various ...
متن کامل